# A new public-key cryplo syskem via Mersenne numbers 

Divesh Aggarwal<br>joint work with Antoine Joux, Anupam Prakash and Miklos Santha

Public-key cryptography

- Introduced by Diffie and Hellman in [DH76]
- Many candidates over the years
-The quest in the recent years has shifted to advanced primitives
-In this work, we propose an arguably simpler PKC scheme. -We also believe it is secure against quantum attacks.

Mersenne cryplosystem

- Belongs to the Ring and Noise family with
- NTRU
- Code-based cryplo
- Ring LWE based cryplo
- With a different Ring: z/pz (p Mersenne prime), and
- a different Noise: Hamming weight mod p.


## Mersenne cryptosystem

Mersenne primes: They are primes of the form $p=2^{n}-1$, where $n$ is a prime, and is named after Marin Mersenne, a French mathematician, who studied Chem in the early 17th century. (Wikipedia)

Main advantage of the cryplosystem: Simplicity

## Mersenne ring and distance

- Ring z/pz
- p a Mersenne prime, ie., $2^{n-1}$

Let :

- $R p(X)=$ rep of $X$ in $[0, p-1]$
$-H W(X)=$ num of 1 in binary rep of $X \bmod p$

Some properties of arithmetic mod $p$
1)

$$
\begin{gathered}
H W(X+Y) \leq H W(X)+H W(Y) \\
11010100111001 \\
+00000000001000 \\
\hline=11010101000001
\end{gathered}
$$

2) For all i, $H W\left(X 2^{i}\right)=H W(X)$
3) $H W(X Y) \leq H W(X) \times H W(Y)$ Induction

$$
\text { 4) } H W(-X)=n-H W(x)
$$

$\underset{\text { Warm Up }}{\text { Wingle bit version }}$

Hard problem

$$
p=2^{\wedge} n-1, \quad n \ll n
$$

f, 9 are numbers mod $p$ with few $(<h)$ is in binary rep.

$$
H=f / g[\bmod p]
$$

Assumption: Given $H$, obtain $f, 9$.

Single bit version
$H=[\bmod p], \quad P K=H, \quad S K=9$ ( $f$ and $g$ containing few 1 s, i.e. $\leq h$ )

Encryption
$a$ and $b$ with few is

$$
\begin{aligned}
& C 0=\operatorname{Enc}(0)=(a H+b) \\
& C 1=\operatorname{Enc}(1)=-(a H+b)
\end{aligned}
$$

Decryption
$g C=[a f+b g]$
Compute HW(gC)
Small $\Rightarrow 0$
Large $\Rightarrow 1$

Toy Example

$$
\begin{aligned}
& p=2^{31}-1=2147483647=0 \times 7 F F F F F F F \\
& H= \\
& =0 \times 42 E 8 B E O F
\end{aligned}
$$

Encryption
$a=0 \times 80800$

$$
\begin{aligned}
C= & \operatorname{Enc}(0)=(a H+b) \\
& =0 \times 766 C A B 3 A
\end{aligned}
$$

Decryption

$$
\begin{gathered}
g C=0 \times 110084 A 6 \\
H W(g C)=8(<16) \Rightarrow 0
\end{gathered}
$$

Correctness of decryption
For correctness, we need $n>4 h^{2}$

$$
\begin{aligned}
& g(a H+b)=a f+b g[\bmod p] \\
& H W(R p(a f+b g)) \leq H W(a) H W(f)+H W(b) H W(g) \\
& \leq 2 h^{2} \leq n / 2 \\
& H W(R p(-(a f+b g)))
\end{aligned} \begin{aligned}
& =n-H W(R p(a f+b g)) \\
& \geq n / 2
\end{aligned}
$$

## Mulli-bit version

 underlying encryplionChange public/private key

$$
H=[\bmod p] \Leftrightarrow f(-1 / H)+g=0[\bmod p]
$$

I.e. $R=0$
$T=f R+g[\bmod p](R$ fully random)

Mersenne
(basic mulki-bit encrypt)
$T=R \quad[\bmod p]$ ( $R$ fully random)
Encryption Decryption of (C1,2)

$$
\begin{array}{lc}
C_{1}=a R+b_{1} & C_{2}^{\prime}=C_{1} \\
C_{2}=a T+b 2 \\
Z=C 2 \oplus E(m) & m=D\left(C_{2}^{\prime} \oplus Z\right) \\
E n c(m)=\left(C_{1}, Z\right) &
\end{array}
$$

E and D : Error correction code

Mulki-bik encryption
Analysis of decryption

$$
\begin{aligned}
& C 2=a T+b 2=a f R+(a g+b 2) \\
& C 2^{\prime}=C 1=(a R+b 1)=a f R+b 1 f \\
& H W\left(C 2 \oplus C 2^{\prime}\right) \leq H \operatorname{Hisk}(C 2, a f R)+\operatorname{Hdisk}\left(C R^{\prime}, a f R\right) \\
& \text { Thus } \operatorname{Dec}(E n C(m) \oplus \text { small error })=m
\end{aligned}
$$

Heuristic : Error is well distributed Allows lo use simple repetition code

Analysis of decryption
LEMMA: Let U be a random $n$-bit string and Let $x$ be an n-bil string of Hamming weight h. Then
$\operatorname{Pr}[H d i s t(U, U+x)>2 h(1+c)]<n e g l i g i b l e$
EXAMPLE:
11001010101011110101110101000111110100101 $+000010000001000100000000100010000100010$

11010010101101111101110101101001111000111

Choice of error-correcting code
-Thus, the local number of errors we expect is at most $e=2\left(2 h^{2}+h\right)$
-We need an ECC correcting e out of $n$ errors

- Can use Reed Muller codes, and $n=O\left(h^{2}\right)$
-The number e is clearly an overestimate of the no. of errors in practice
-Also, we expect the errors to be distributed randomly


## Recommended parameters

$n=756839$

Low HW parameter $h=266$
Encode 256 bits:
with 2048 -repetition coding

## HeurisCics



Hard Problem
Distinguish

Hidden Low weight
(R1, R2, aR1+b1, a R2+b2)
$a, b 1$, be with low HW

Random tuple
$(R 1, R 2, R 3, R 4)$

## Mulki-bit Mersenne

 CCA-KEMCCA-KEM
Alice
Bob
Alice's PK


Encaps

Shared Key
Shared Key

# CCA-KEM under active altack 

Alice

## Alices SK



Mersenne KEM encaps (with CCA security)
$S=$ Random seed

1) Initialize PRE from $s$
2) Produce pseudo random shared secret
3) Run basic encryption of $s$ (getting $a, b 1$, bi from PRG)
4) Output ( $\mathrm{C}_{1}, 2$ )

Mersenne KEM decaps (with CCA security)

1) Run basic decryption on ( $C 1,2$ )
2) Re-encapsulate from s
3) Compare and Output
a) Shared secret
b) or $\perp$

Best Known attacks [BCGN17, BDJW18] (for proposed params)

$$
\text { Trivial: } \quad\binom{n}{n}
$$

Best Classical : At Least $2^{2 h}$
Best Quantum : At Least $2^{h}$

## Future Work

## - Cryplanalysis

-Improve efficiency without compromising security

## Thank You

